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DOUBLE-MODE PULSATION

Arthur N. Cox
Theoretical Livision, Los Alamos National Laboratory
University of California
Los Alamos, New Mexico 87545 USA

Double mode pulsation is a very pervasive phenomenon in 3tars all over
the Hertzsprung-Russell diagram. In order of increasing radius, examples
are: ZZ Ceti stars, the sun, the § Scuti stars, RR Lyrae variables, the B
Cephai variables and those related to them, Cepheids, and maybe even the
Mira stars. These wany modes have been interpreted as both radial and
nonradial modes, but in many cases the actual mode has not been clearly
identified. Yellow giants seem to be the most simple pulsators with a large
majority of the RR Lyrae variables and Cepheids showing only >ne pulsation
period. We limit this review to those very few cases for classical Cepkeids
and RR Lyrae var‘abies which display two modes. For these we know many
facts about these stars, but the actual cause of the pulsation in two modes
simultaneously remains unknown.

Table 1 lists the eleven double-mode Cepheids known at this time. They
are all in our galaxy; ncone have ever been found in even the nearby
Magellanic clouds. Intensive searches by Szabados (1977), Pike and Andrews
(1979), Henden {1979, 1980) in the northern hemisphere and by Barrell (1982)
in the southern hemisphere have not been able to add to this list. It is
true that there are strange cases such as HD 161796 recently discussed oy
Fernie (preprint) where this star seems to show for a time the fundamental
radial mode and then later the pure overtone mode. The Table 1 stars are in
a well defined class for which we lhope to produce complete explanations in
the near future.

We see that the double-mode Cepheids all have periods between 2.1 and
6.3 days. With the exception of AX Vel, they all have a larger amplitude
for their fundamental mode than for their overtone comporent. There seems
to be no dispute that the two modes are correctly identified, mostly because
the period ratio is very close to that expected for these two periods. It
is, however, the period ratio that is the cause of most of the puzzle in the
stars. All theg~ rutios range from 0.6967 to 0.7105 over a period range of
almost a factor of three in the fundamental.

In an extensive program to observe the ten southern hemisphere double-
mude Cepheids, Barrell has supplied the mean color: and derived the mecan
effective temperatures listed in the next to the lart column. These are
based on Hu daia. In the last column, radii, to be discussed later from
Balona and Stobie (1979) and Niva and Schmidt (1979) (for TU Cas) are given.

One important interest in the double-mode Cepheids is their number.
Sto*ie (1977) has pointed out that even though there are only a few of these
stars known, they constitute a very large fraction of the short period
Cepheids. He, and now Barrell in a preprint sent to me to prepare for this
review, included in their discussion both type I and type 1I Cepheids. 1
feel this is not ‘he correct thing to do. The type 11 Cepheids are com-
pletely different stars, with masses appropriate for population TIl--about
0.6 solar masses. On the other hand the classical Cepheids, according to



TABLE 1

DOUBLE-MODE CEPHEIDS

PO AVO AVl log Te
Star (days) Pl/PO (mag) (mag) (Barrell) R/Re
TU Cas 2.1393 0.7097 0.66 0.31 3.804 22.0
UTr A 2.5684 .7105 .47 .25 3.775 2).2
VX Pup 3.0109 .7092 .46 .33 3.775 47.5
AP Vel 3.1278 .7031 .35 .41 3.770 47.1
BK Cen 3.1752 L7047 .52 .20 3.772 53.7
UZ Cen 3.3343 .7063 .30 3.777 35.8
Y Car 3.6398 .7031 .58 .29 3.711 42.2
AX Vel 3.6731 .7059 .22 .33 3.776 52.9
GZ Car %.1590 .7052 .16 3.782 46.6

BQ Ser 4.2707 .7053 3.775

V 367 Sct 6.2931 0.6967 0.5 0.2 3.775

evolutionary theory have masses like 5, 6, or at most 7 solar masses. In my
revidion of the Stobie and Barrell data, I get the fractions of Cepheids
which are double-wode in the following period ranges as: 1-2 days, 0; 2-3
days, 0.40; 3-4 days, 0.23; 4-5 days, 0.05; 5-6 days, 0.00; and 6-7 days,
0.03. We see that in the period range 2-4 days the double-moce (epheids
comprise about one-third of all the known Cepheids. This may not be toc
surprising if the pulsation instability strip in the Hertzspring-Russell
diagram is very narrow at this low end, and this strip includes the double-
mode phenomenon.

Masses of these double-mode Cepheids can be determined by five dif-
fercnt methods. Stellar evolution calculationa show that the evolution
tracks in the Hertsprung-Russell diagram that are in the observed period
range correspond to 5-7 solar masses. Becker, Iben, and Tuggle (1977) have
given a formula for the stellar mass given the luminosity. Some workers
have then used a luminosity from the period-luminosity relation to derive
masses. This method does not give the wrong mass, but it is not particu-
larly a wise thing to do because the period-luminosity relation is in itself
based on intricate calibrations of the distance scale. We here consider
that only for V367 Sct, in the galactic cluster NGC 6649, do we know its
luminosity in a ressonybly direct way, and therefore we can obtain a mass.

Cox (1980) shows that a theoretical mass can be derived using only the
well known period and an even approximate T value. The Barrell data allow
us to get a very accurate mass because she hss given accurate T values.
This theoretical msss results from using four equations discussed by Cox
(1979) for the four unknowns: the radius, the luminosity, the pulsation
constant Q, and the theoretical mass. Since the theoretical stellar evolu-
tion mass-Jluninosity relation i one of the four equations, and sipce it has
a strong rffrct, the theoretical mamses are usually very close to the evolu-
tion massen.

The wall-known pulsation mass can be found for those cascs where the
luminosity and the eifective aurface temperature is known. For our double-
mode Cepheids again only V367 Srt qualifies for this mass determination.



The beat or double-mode mass discussed first by Petersen (1973) is
based on only the observed period and period ratio. In the temperature
range which can be very wide, there is a unique curve for a given mass and
compositior. in the 1N /NN versus I, (Petersen) diagram. Thus, the use of the
period data gives a mass called the beat mass. It is this mass which is
very low compared to the other masses.

The last type of mass we discuss here uses the Wesselink radius deter-
mined by Balouna and Stobie and by Niva and Schmidt. As is typical, the
Wesselink mass is not very accurate, because the mass from the period mean
density relation goes as the cube of the rather uncertain radius.

These five kinds of msss are listed in Table 2. The most reliable ones
are the theoretical masses, of course assuming that there is no major error
in the pulsation theory constant Q or in the evolution theory mass-luminosity
relation. Actually, recent calculations by Matraka, Wassermsnn, and Weigert:
(1982) and by Becker and Cox (1982) show that the masses de.ived from the
Becker, Iben, and Tuggle mass-iuminosity formule are a bit large, about
15-20 percent. For the theoretical masses we also give the corresponding Q
values in days. The beat masses from a Petersen diegram are the one given
next. Finally, the rather uncertain Wesselink masses and the Q value are
listed. The conclusion at this point is that there seems to remain the long
standing beat Cepheid mass anomaly.

TABLE 2

DOUBLE-MODE CEPHEID MASSES

Star v oM % MM N %
TU Cas - 4.8 0.0366 - 1.4 3.2 0.0374
UTrxr A - 4.8 0.0371 - 1.6 2.0 0.0397
VX Pup - 5.1 0.0375 - 1.8 17 0.0378
AP Vel - 5.1 0.0376 - 1.6 15 0.0376
BK Cen - 5.1 0.0376 - 1.7 24 0.0393
UZ Cen - 5.3 €.0377 - 1.7 5.8 0.0376
Y Car - 5.4 0.0279 - 1.8 7.9 C.0374
AX Vel - 5.5 0.0380 - 2.0 16 0.0379
GZ Car - 5.9 0.0382 - 2.0 8.3 0.0378
BQ Ser - 5.8 0.0353 - 2.0 -

V 367 Sct 6.9 6.5 0.0394 5.0 2.3 - -

The radii used for the Wesselink masses in Table 2 are given in Table
1. One can see that there is considerable uncertainty in sowe of these
values becaus¢e the masses obtained when using them are very anomolous.
Theoretical masses given in Table 2 indicate radii that rang» from 25 to 56
solar radii for, respectively, TU Cas and V3€7 3Sct. At lieast therr is no
major discrepancy between the theoretical and Wesselink radii as there might
be if the manses were only one-third of the theoretical masses.

Combining luminosities from the Sandage snd Tamrann (1969) period
luminosity relation with the newly observed surface e(fective temperatures,
Barrell has produced the Nertzsprung-Russell diagram given as Figure 1. The



most surprising thing about this diagram is that the double-mode Cepheids

are all at an almost unique surface effective temperature. It is very
suggestive that the double-mode phenomenon is related to the transition
betweer e fundamental and first overtone pulsation modes. Unfortunately,

we still —-nnot produce nonlinear calculations which show this pulsation in
both modes 1imultaneously at least over long periods of time.

Figure 1 is actuslly tue theoretical Hertzsprung-Russell diagram of
King, Cox, Eil=re, and Davey (1973) and the observational one repcrted
King, Hansen, Ross, and Cox (1973). The cross-hstched region is probably
not relevant to our current discussion. There is indeed a discrepancy
between the observed double-mode Cepheids and the fundsmental blue edge both
from the observational and the theoretical viewpoints. Well established
Cepheids occur at bluer positicns in this diagram, for example, SU Cas, EV
Sct, and CV Mon, and they seem to be in the fundamental pulsation wode. The
distance from the F blue edge and the exictance of bluer fundamental mode
pulsators apparently precludes for these Cepheids the explapation that there
is some mode switching. The Pel and Lub (1978) data, bowever, seem to
support the concept of mode switch:ng since there few cases are even bluer.
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Figure 5. The theoretical fundamental (F), first overtone (1H) and second overtone (2H) blue cdges of
KCLED (solid lines) are shown in the T-L plane together with the empirical Instability Strip of KHRC
(long-dashed lines and dot-shuding). The approximate extent of the predicted complex:mode behaviour
region Is thown by the cross hatched area — the empiriial red edge of the Strip was extrapolated to define
point C. The beat Cepheids are shown by dots, the open clrcle represents TU Cas.

Fig. 1. The Barrell Hertzsprung-Russell diagram
in the region of the double-mode Cepheids.

One more thing that Barrell has done is to try to obtain composition
data for the double~mode Cepheids. By looking at the iron lines in the
spectra, it appears that the log of the iron abundance relative to the sun
is -0.21 with an error of 0.33. This means that the iron abundance is about
0.ul molar with a factor of two possible error.



For the double~-mode Cepheids, all seems to indicate that the stars are
normal blue-looping yellow giants except their period ratios. Four ideas to
reconcile these low period ratios--0.70 rather than the expected 0.74-- have
been proposed. Cox, Deupree, King, and Hodson (1979) have suggested that a
surface layer enhanced in helium would change the structure of the outer
layers to appear less concentrated, This would increase the pericds of all
modes with the fundamental mode being increased the most. Thus, the fun-
damental to overtone period ratio would be decreased as required to accord
with the observationt. The enhancement in helium needed is ur to a mass
fraction of 0.65 pver the outer envelope down to a temperature of 25(,000K.
This is about 10 ~ of the mass of the Cepheid.

Stothers (1979) has suggested that the period ratios of these double-
mode Cepheids could be reduced to cemar the observed level if there is a
rather strong magnetic field in the surface layers. This field would pro-
duce a pressure comparable to that from the gas. This magnetic field would
be tangled by the ccnvection and therefore not be too easily observed as a
uniform field on the surface. The weak fields seen in some Cepheids gives
support to this idea even though the observed fields seem to be much smaller
than required to reduce the period ratios.

Recently Simon (preprint) has proposed that the cause of the large
period vatios in the double-mode Cepheids is an incorrect opacity for the
elements heavier than helium. An opacity increase by a factor of two in the
temperature range between about 100,000K and 1,000,000K changes the struc-
ture encugh so that the observed low period ratios are predicted. In spite
of this proposed reasonable solution to the double~mode mass problem, there
does not seem to be any reason for the opacities to be this wrong. If there
is a problem, however, it would be in the elements C, N, 0, and Ne. One
nice feature of this idea is that it would also change the period range for
bumps to occur in the longer period Cepheids to that observed, that is 7-11
days. Another good feature is that the RR Lyrae variables seem to have the
correct beat masses, as we will see later. I* *he opacity of elements
heavier than hydrogen and helium are the probliem, it would have a very small
effect on the low Z population II RR Lyrae stars.

One problem with the magnetic field and increased opzcity ideas is the
observation that the period ratios are almost constant over the entire
period range of the double~-mode Cepheids. The enhanced helium model can
predict the correct zero slope in the Petersen diagram, but the results to
date for these two more recent ideas show the normal negative slope, though
the period ratios are at least in the proper range. It is conceivable that
this problem can be rectified however, for both thLe magnetic field and
opacity increase only

Cox (1580) at thc last Goddard Meeting suggested that there might be aa
admixture of nonradial modes which are nut recognized but able to distort
our ideas about the pulsation modes seen. There is some support to this
id=a because there are some unstable nonradial modes with high £ values that
are known. Just exactly how this interaction might occur is to date unknown.

We now turn tc the other clasa of variable star that shows simple
doublie-mode behavior, the RR Lyrae variasbles. A field star AQ lLeo was
discovered to have two modes by Jerzykiewicz and Wenzel (1977). Cox, King,



and Hodson (1980) found that from pulsation theory the mass was 0.65 solar
mass. In 8 recent preprint, Jerzykiewicz, Schult, and Wenzel have now
shown that this star has a color that places it between the fundamental and
overtone pulsators in the Hertzsprung-Russell diagram. This indicates that
the star is in a stage of evolution where it is switching from the funda-
mental to the overtone or vice versa. The theoretical switching timescale
of about 150 years seems too long for the observations to show now, but over
the last 20 years it seems that if anything there has been 3 switch from the
overtone to the fundamental.

Sandage, Katem, and Sandage (1981) have given photographic photometry
data for many stars in the RR Lyrae instability strip of the globular clus-
ter M15. They note that the Bailey ¢ type variables with periods between
0.38 and 0.43 days show erratic behavior which might be attributed to double-
mode puisation. Cox, Hodson, and Clancy (in press) bhave siudied these stars
and find ten to be indeed pulsating in both tae fundamental and overtone
simultaneously with a period ratio of 0,746 within 0.001. They then use a
Petersen type diagram of period ratio versus fundamental mode period to
chtain a mass of 0.65 solar mass. These ten double-mode RR Lyrae variables
are listed in Table 3. The best case, V31, is shown in Figure 2 wbere both
modes are plotted after prewhitening with the other mode, its harmonics, and
any mode interaction terwms.
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Fig. 2. The two pulsation modes of the RR Lyrae variable V31
in M15 are displayed. Each mode has been isolated from the
double-mode behavior by y ewhitening by the other mode and
any mode iteration terms.




It is of great interest to know if double-mode RR Lyrae varisbles can
be found in other globular clusters, especially for one in the Oosterhoff
group I with shorter period RR Lyrae variables. Two have been found in M3,

and they are also listed in Table 3. Finally, the single case for M68
discussed by Andrews (1980) is also given.

TALLE 3

1S Dogble-Hode Varishles
Munber Pl(d)(SIS) log 'I'.(l)(ll'!) P|(d) 'I"O A|(-|) AlIAo o{nag) 1log I.Il.. log T.(l) llll.

3 0.38956% 3.818 0.309573 0.7450 0.397 2.4 0.046 1.718 3.848 5.2
A1 0.391743 3.047 0.391761 0.7343 0.349 2.0 0.056 1.19 - -
€1 0.39%4£0 3.850 0.400065 0.7472 0.426 1.7 0.068 1.78 3.048 | B ]
11-S  0.399864 3. 0.404615 0.7628 0.343 2.2  0.059 - - -
6 0.402243 3.025 0.402275 0.7408 0.327 3.4 0.050  1.78 3.864 5.4
0 0.45976 3.3 0.603977 0.745% 0.331 2.0  0.047 1.7 .84 5.4
S8 0.407669 {3.854) 0.407685 0.7468 0.298 1.6 0,057 1.76 3.0 3.
3N 0.400231 32.840 0.400191 0.7459 0.347 1.8 0.043  1.79 M6 5.4
83 0.414161 1.087 0.414165 0.7437 ©0.327 1.9 0.056  1.19 3.8 8.4
17 0.420872 3.822 0.420872 0.7662 0.321 1.7  0.048 1.70 3.8% 5.6

M3 Double-Mode Variables
68 0.1355971 0.7450 W45 1.1

8? 0.13575 0.745
. L

M6tB Doyble~Hnde Variahle

) 0.39074 0.7416

The Peterson diagram for several masses in the observed period and
surface etftfective temperature ranges is given in Figure 3. This is the
figure that is published by Cox, Hodson, and Clancy (1982). The M15 stars
are marked by the symbol X, with V31 circled. The two shorter period M3
stars are overlapped at the + sign at a period of 0.48 day. The M68 case is
almost coinrident with an M15 star. The very low case for M15 is moved up
to the rest of the M5 stars if newer data by Filippenko and Simon (1981) is
used. From inspection of the diagram, it appears that the M15 RR Lyrae
stars have a mass of 0.65 solar mass, the M3 stars, a mass of (.55 solar
mass, and the sole M68 star, a mass of perhaps 0.60 solar mass. Maybe the
difference between the Oosterheff groups is & difference of mass, with the
Oosterhoff group II having the higher mass of 0.65 solar mass.

Further analysis of the Hertzsprung-Russell diagram for these M15 stars
shows that the best fit is for a helium mass i{raction of 0.28. This puts
the blue and red edges where they are shown in Figure 4. This blue edge
calculated by Cox, Hodson, and Clancy agrees well with tuat calculated by
many others such as Tuggle and Iben (1972). The red edge is more contro-
versial, being based on the Deupree (1977) calculations of two dimensional
time dependent convectjon. Such red edges are now being verified however Dy
new Stellingwerf (1982) results. The Baker and Gough (1973) and Gonzi and



Osaki (1980) linear theory results give red edges much cooler and do not
agree so well with the observations. Figure 4 constrains all the MI15 RR
Lyrae variables to have a mass of 0.65 solar mass, but the change in plotted
position which arises from a change of 0.05 solar rass is indicated. Lines
of constant period in the fundamental mode as well as the lines of constant
period ratio are also shown.
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Fig. 3. The Petersen diagram of period ratio versus period for

the double-mode RR Lyrae variables. The M15 prints are given as X's,
the two M3 points by a single + sign, and the sole M68 double-mode
variable lies among the M15 peints at a period of 0.53 day.
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For the classical Cepheid case, the double-mode phenomenon poses two
problems, the period ratio and the actual cause of the double-mode pulsa-
tion. While neither problem is understood, at least for the double-mode RR
Lyrae case the problem is only to learn the cause of the pulsation.
Stellingwerf (1975) showed that if one can get simultaneous instability of
full-amplitude fundamental and overtone modes toward ecach other, then
obviously the equilibrium situation will be pulsation . both modes ac the
same time. This situation has not yet been demonstrated in realistic models;
one full amplitude mode may decay to the other, but the other is stable
against any mode switch.
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Fig. 4. The theoretical H-R diagram for 0.65 M_ models. M15 RR
Lyrae stars are plotted assuming the mean luminosity of them is

leg L/L_ = 1.78. Fundamental (F) overtone (0) and double-mode
(+) stars as marked.

Simon, Cox, and Hodson (1980) have calculated nonlinear Cepheid models
that start out in two modes at once. They both grow as linear theory pre-
dicts until, at some threshold amplitude, one of the modes bezins to domi-
nate. The other mode decays in time giving ultimately a pure mode. Cases
where either the fundamental or the overtone can dominate are displayed, but
never can both occur at the same time. These authors consider what might
happen if the limiting amplitude is not large enough to defeat the presence
of the other mode. In that case, mode switching will occur, or at least a
tendency to do so will exist. If the switch is complete to a level for the
now dominant mode wiiich can defeat the original mode, then the mode switching
is complete. This is case a in the Figure 5, where the suppression ampli-~
tude of the fundamental is larger than the limiting fundamental ampiitude.
Case b is the opposite case where the fundamental mode cannot be suppressed
by the overtcne amplitude and the switch to the fundamental is complete.
The case where both modes are strong enough to defeat the other can result
in the much discussed either-or modal behavior. That is case c¢. Finally in
case d, neither mode can get enough strength to suppress the cther, and a
compromise mixed mode situation exists.

Regev and Buchler (1981) and Buchler and Regev (1981) have developed a
simple system of equations which represent in a crude way both the double-
mode pulsation of two modes and the energy equation. The results of their
work is that with certain parameters, the mode switch can be followed. In
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another case with a different set of parameters a wandering around the
intersection point in Figure 5 case d is seen.
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Fig. 5. The Simon, Cox, and Hodson diagrams here show the behavior
of modes depending on their amplitudes. Cases a8 and b give pure
modes. Case c is the either-or case. Double-mode pulsation can
occur if one has the sjituation of case d.

There has been considerable discussion about whether the bhasic cause of
double-~mode pulsation is a resonance between two of the naturally occurring,
or normal, modes. This is a follow-cn from the rather successful Simon and
Schmidt (1976) thought that the bump Cepheids have a resonance between the
fundamental mode and the second overtone which causes the observed light and
velocity curve bumps. Papers by Simon (1979), Petersen (1979, 1980), and
Takeuti and Aikawa (1980 and preprint) discuss whetuer the resonance could
be between the fundamental, the first overtone, and the third. Numerically
there is a resonance, but Simon, Cox, and Hodson (1980) were not able to
show that the double mode behavior is likely for resonant model envelopes.

An idea, pursued for this conference, to find the cause ot double-mode
pulsation is discussed by Hodson and Cox. This can be seen in Figure 6,
which is a somewhat schematic version of a diagram first made by
Stellingwerf. For RR Lyrae variables, the linear thecry growth rates are
plotted versus effective temperature of models. Here it is assumed that the
mass of the RR Lyrae variable is 0.65 solar mass, has a population II compo-
sition, and has a luminosity of 60 suns. The overtone blue edge (1HBE) of
the instability strip, the fundamental mode blue edge (FBE), a transition
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line (TL), and the red edge (RE) from the Deupree work are labelled. The
two other solid lines are the stability of full amplitude solutions, that
is, they give the rate of growth of the fundeswental in the ful. amplitude
solution (F in 1H) and the growth of the overtopne in the fundamental full
amplitude solution (1H in F). The transition line is where a blueward
evolving fundamental mode star would switch to the overtone because the
overtone wants to grow at this and botter temperatures. We show that the
overtone is always stable at all effective temperatures, as a series of RR
Lyrize calculations by Simon, and reported by Cox show. As just discussed,
and as Stellingwerf has emphasized, the stability of a mode is assured if
its amplitude is large enough. If the amplitude is decreased by some mecha~
nism such as turbulent viscosity damping, then the amplitude m2y pot exceed
the suppression amplitude, and mode switching might result.

Figure 6 indicates with its dashed lines what can happen for reduced
amplitudes. These lines must start from the two blue edges because for
those points the full amplitude solutions must have zero amplitude just as
linear theory assumes. Reduction of the pulsation amplitude at cooler
temperatures to the right in the diagram would mean that the nonlinear
stability results would approach the linear ones. If this rotation can be
large enough, it is possible that between the FBE and the TL both modes
would be unstable against decay tuv Lhe other mode and double-mode bebavior
could be found. As drawn in Figure 6, the region where there is instability
in both nonlinear modes, and therefore double-mode pulsation, is very parrow.
This does not match the observations in M15 as; shown in Figure 4. One
possible solution to this problem is to make the unconventional proposal
that the helium mass fraction differs from star to star in M15, so that this
double-mode behavior can cccur in an effective temperature rznge much larger
than Figure 6 indicates.

Figure 6 shows that the overtone mode is always stable at full ampli-
tude for all effective temperatures in the instability strip. At a2 somewhat
smaller amplitude, however, it may be that there is a small region in the
middle of the strip wherc the overtor is unstable to a switch to the fun-
damental. The ipteresting thing is that if this overtone is always locked
into its mode, evolution in the cooler or redward direction would give very
red Bailey c¢ type variables. Since these variables are not observed in any
confirmed cases, it appears that RR Lyrae variables evolve only blueward in
the instability strip. This has important implications for low mass stellar
evolution on the horizontal branch.

To this theoretical discussion we should add the nbservational evidenre
on mode switching. Hodson, Stellingwerf, and Cox (1979) found that TU Cas
has a decreasing overtone amplitude from magnitude observations over a ./
year time span. This decay was verified by Niva (1979) using radial veloc-
ity observations since 1917. On the other hand, Faulkner and Shobbrook
(1979) discovercd that the overtone in the other very short period doubie-
mode Cepheid U TrA seems to be growing. These mode changes are at about the
theoretically predicted rates, but they do conflict with the fact that many
of the short period Cepheids have the two modes as if they were stuck there
in their evolution. The apparcently more common case is documented by Macore,
Stobie, and Van den Bergh {1978) who found that the longest period double-
mode Cepheid V367 Sct scems to have had no change in amplitude over a period
+f 50 years.



For more details on observational aspects of double-mode pulsation one
should refer to the excellent recenc review by Stobie (1980). Also the
other excellent review at that time dDy Cox (1980) includes some more theo-
retical ideus abouvt the cause of the anomalous period ratios and the causes
of doutle~mode pulsation.

At present the gtatus of this research on double-mode pulsation leads
to the following conclusions: 1) Double-mode Cepheids and RR Lyrae var-
iables have marses, radii, and lumiposities normal for theii evolution. 2)
Classical Cepheid period ratios require some composition, magnetic field or
opacity influences. 3) Douhle-inode behzvior is likely not mode switching
but neverthieless it seems to require both F and 1lH modes to be unstable to
each otier at or near the transition line in the Hertzsprung diagram.

I would like to express amy thanks to Don Fernie and Mike Jerzykiewicz
for their recent preprints. Also this review would not have been possible
withcut the Barrell date kindly sent on *o me by Bruce Cogan.

RR LYRAE INSTABILITY
6 065 M, LoglL/Ly =178 —
IHBE FBE TIL

7(% /w)
o
+b

-4

Log Te

Fig. 6. Growth rates versus ¢ .eciive temperature is plotied for both
linear and nonlinear pulsstions of RR Lyrae variables.
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